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Abstract

Problems of data analysis, like classi/cation and regression, can be studied in the framework of
Regularization Theory as ill-posed problems, or through Statistical Learning Theory in the learning-from-
example paradigm. In this paper we highlight the connections between these two approaches and
discuss techniques, like support vector machines and regularization networks, which can be justi/ed
in this theoretical framework and proved to be useful in a number of image analysis applications.
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1. Introduction

The goal of this paper is to provide a brief introduction to the study of supervised
learning within the framework of Regularization Theory and Statistical Learning
Theory. For a detailed review of the theoretical aspects of this subject see Evgeniou
et al. (1999). In supervised learning or learning-from-examples a machine is trained,
instead of programmed, to perform a given task on a number of input–output pairs.
According to this paradigm, training means choosing a function which best describes
the relation between the inputs and the outputs. In functional analysis, the choice of
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the optimal function is an example of an ill-posed problem which can be addressed
with the machinery of Regularization Theory. In a probabilistic setting, a second
fundamental problem, studied by Statistical Learning Theory, is how well the chosen
function generalizes, or how well it estimates the output for new inputs.

This paper is organized as follows. We /rst outline the key concepts of Regular-
ization and Statistical Learning Theory in Sections 2 and 3, respectively. We then
present in Section 4 Regularization Networks and Support Vector Machines (SVMs),
two important learning techniques which can be theoretically justi/ed within the
proposed framework. In Section 5 we discuss implementation issues and a few ap-
plications of SVMs which recently gained much attention from the image analysis
community. Finally, we draw our conclusions in Section 6.

2. Regularization theory

We consider techniques which lead to solutions of the form

f̂(x) =
‘∑
i=1

ciK(x; xi);

where the xi; i= 1; : : : ; ‘ are the input examples, K a certain symmetric positive
de/nite function named kernel, and ci a set of ‘ parameters to be determined from
the examples. The function f̂ is found by minimizing functionals of the type

�[f] =
1
‘

‘∑
i=1

V (yi; f(xi)) + �||f||2K ;

where f belongs to some suitable Hilbert space H; V is a loss function which
measures the goodness of the predicted output f(xi) with respect to the given output
yi; ||f||2K a smoothness term which can be thought of as a norm in the Reproducing
Kernel Hilbert Space de/ned by the kernel K and � a positive parameter which
controls the relative weight between the data and the smoothness terms. The choice of
the loss function determines diIerent learning techniques, each leading to a diIerent
learning algorithm for computing the coeJcients ci.

The inclusion of the �||f||2K factor above is central in Regularization theory and,
as we discuss below, it is also central in Statistical Learning Theory.

The minimization of the functional

1
‘

‘∑
i=1

V (yi; f(xi));

for f∈H, which might seem a more straightforward approach, is an ill-posed prob-
lem, 1 because it admits an in/nite number of solutions. Regularization theory (see
Tikhonov and Arsenin, 1977; Morozov, 1984, for example) provides a framework

1 A well-posed problem (in the sense of Hadamard, (Tikhonov and Arsenin, 1977)), is a problem for
which a solution (a) exists, (b) is unique, and (c) depends continuously on the data. A problem for
which at least one of the above conditions does not hold is ill-posed.
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Fig. 1. Both the dashed and solid curves interpolate the data (denoted by the /lled squares), but with
diIerent degree of smoothness.

for restoring well-posedness by adding appropriate constraints on the solution. The
smoothness term above is a classical example of regularizing constraint which en-
forces uniqueness by penalizing functions with wild oscillation (see Fig. 1) and eIec-
tively restricting the space of admissible solutions. This ensures that the regularized
solution has good predictive capabilities. This issue, however, needs a probabilistic
treatment that is not studied with Regularization Theory. A well-founded theoretical
framework within which the generalization capabilities of data analysis and super-
vised learning methods can be studied is Statistical learning theory (Vapnik, 1998),
that we now brieKy overview.

3. Statistical learning theory

We /rst formulate the problem of supervised learning in a statistical setting dis-
tinguishing between empirical and structural risk minimization and introducing the
key concept of capacity control.

3.1. Empirical risk minimization

We consider two sets of random variables x∈X ⊆ Rd and y∈Y ⊆ R related
by a probabilistic relationship. The relationship is probabilistic because generally an
element of X does not determine uniquely an element of Y , but rather a probability
distribution on Y . This can be formalized assuming that an unknown probability
distribution p(x; y) is de/ned over the set X × Y . We are provided with examples
of this probabilistic relationship, that is with a data set D‘ ≡ {(xi ; yi)∈X × Y}‘i=1
called training set, obtained by sampling ‘ times the set X ×Y according to p(x; y).
The “problem of learning” consists in, given the data set D‘, providing an estimator,
that is a function f :X → Y able to predict a value y from any value of x∈X .

In Statistical Learning Theory, the standard way to solve this problem consists
in de/ning a risk functional, which measures the average amount of error or risk
associated with an estimator, and then looking for the estimator with the lowest risk.
If V (y; f(x)) is the loss function measuring the error we make when we predict y
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by f(x), then the average error, the so called expected risk, is

I [f] ≡
∫
X;Y

V (y; f(x))p(x; y) dx dy:

We assume that the expected risk is de/ned on a “large” class of functions H and
we will denote by f0 the function which minimizes the expected risk in H. The
function f0, our ideal estimator, is often called the target function. This function
cannot be found in practice, because the probability distribution p(x; y) that de/nes
the expected risk is unknown, and only a sample of it, the data set D‘, is available.
To overcome this shortcoming we need an induction principle that we can use to
“learn” from the limited number of training data we have. Statistical Learning Theory,
as developed by Vapnik (1998), builds on the so-called empirical risk minimization
(ERM) induction principle. The ERM method consists in using the data set D‘ to
build a stochastic approximation of the expected risk, which is usually called the
empirical risk, de/ned as

Iemp[f; ‘] =
1
‘

‘∑
i=1

V (yi; f(xi)):

Straightforward minimization of the empirical risk in H can be problematic. First, as
we have already discussed in the previous section, it is an ill-posed problem. Second,
it can lead to over<tting, meaning that although the minimum of the empirical risk
can be very close to zero, the expected risk which is what we are really interested
in can be very large.

Statistical Learning Theory provides probabilistic bounds on the distance between
the empirical and expected risk of any function (therefore including the minimizer
of the empirical risk in a function space that can be used to control over/tting). The
bounds involve the number of examples ‘ and the capacity h of the function space, a
quantity measuring the “complexity” of the space. Appropriate capacity quantities are
de/ned in the theory, the most popular one being the VC-dimension (Vapnik and
Chervonenkis, 1971) or scale sensitive versions of it (Kearns and Shapire, 1994;
Alon et al., 1993). The bounds have the following general form: with probability at
least �

I [f]¡Iemp[f] + ’

(√
h
‘
; �

)
; (1)

where h is the capacity and ’ an increasing function of h=‘ and �. For more in-
formation and the exact forms of the function ’ we refer the reader to Vapnik
and Chervonenkis (1971), Vapnik (1998) and Alon et al. (1993). Intuitively, if the
capacity of the function space in which we perform empirical risk minimization
is very large and the number of examples is small, then the distance between the
empirical and expected risk can be large and over/tting is very likely to occur.
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3.2. Structural risk minimization

Since the space H is usually very large (e.g. H could be the space of square in-
tegrable functions), one typically considers a smaller hypothesis space H . Moreover,
inequality (1) suggests an alternative method for achieving good generalization: in-
stead of minimizing the empirical risk, /nd the best trade oI between the empirical
risk and the complexity of the hypothesis space measured by the second term in
the r.h.s. of inequality (1). This observation leads to the method of Structural Risk
Minimization (SRM).

The idea of SRM is to de/ne a nested sequence of hypothesis spaces H1 ⊂ H2 ⊂
· · · ⊂ HM , where each hypothesis space Hm has /nite capacity hm and larger than
that of all previous sets, that is: h16 h2; : : : ;6 hM . For example Hm could be the
set of polynomials of degree m, or a set of splines with m nodes, or some more
complicated nonlinear parameterization. Using such a nested sequence of increasingly
more complex hypothesis spaces, SRM consists of choosing the minimizer of the
empirical risk in the space Hm∗ for which the bound on the structural risk, as
measured by the right hand side of inequality (1), is minimized. Further information
about the statistical properties of SRM can be found in Devroye et al. (1996) and
Vapnik (1998).

To summarize, the problem of learning from examples can be solved in three steps:
(a) de/ne a loss function V (y; f(x)) measuring the error of predicting the output
of input x with f(x) when the actual output is y; (b) de/ne a nested sequence
of hypothesis spaces Hm; m= 1; : : : ; M whose capacity is an increasing function of
m; (c) minimize the empirical risk in each of Hm and choose, among the solutions
found, the one with the best trade oI between the empirical risk and the capacity as
given by the right hand side of inequality (1).

3.3. Capacity control in reproducing Kernel Hilbert spaces

Insight about the connection between Regularization Theory and Statistical Learn-
ing Theory in the problem of learning from examples can be gained through the
concept of Reproducing Kernel Hilbert Space (RKHS) (Wahba, 1990). A RKHS is
a Hilbert space of functions f of the form f(x) =

∑N
n=1 an�n(x), where {�n(x)}Nn=1

is a set of given, linearly independent basis functions and N can be possibly in/nite.
A RKHS is equipped with a norm which is de/ned as

||f||2K =
N∑
n−1

a2
n

�n
;

where {�n}Nn=1 is a decreasing, positive sequence of real values whose sum is /nite.
The constants �n and the basis functions {�n}Nn=1 de/ne the symmetric positive
de/nite kernel function

K(x; y) =
N∑
n=1

�n�n(x)�n(y):
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A nested sequence of spaces of functions in the RKHS can be constructed by bound-
ing the norm of in that space. This can be done by de/ning a set of constants
A1 ¡A2 · · ·¡AM and considering spaces of the form

Hm = {f∈RKHS: ||f||K6Am}:
It can be shown that the capacity of the hypothesis spaces Hm is an increasing
function of Am (see for example Evgeniou et al., 1999). Therefore, the solution of
the learning problem is found by solving, for each Am, the following optimization
problem

min
f

‘∑
i=1

V (yi; f(xi))

subject to ||f||K6Am;

and choosing, among the solutions found for each Am, the one minimizing the struc-
tural risk.

4. Learning machines

The implementation of the SRM method described above is not practical because it
requires to look for the solution of a large number, in principle in/nite, of constrained
optimization problems. Before presenting two important learning techniques, which
can be theoretically justi/ed within the proposed framework, we show how this
diJculty can be overcome.

4.1. Learning as functional minimization

Instead of looking for the solution of many optimization problems, we search for
the minimum of

H [f] =
1
‘

‘∑
i=1

V (yi; f(xi)) + �||f||2K : (2)

The functional H [f] contains both the empirical risk and the norm (complexity or
smoothness) of f in the RKHS, similarly to functionals considered in Regulariza-
tion Theory (Tikhonov and Arsenin, 1977). Within the Statistical Learning Theory
framework, the regularization parameter � can be seem as a penalty for functions
with high capacity: the larger �, the smaller the RKHS norm of the solution will
be. This same factor also transforms an ill-posed problem into a well posed one, as
discussed in Section 2.

When implementing SRM, the key issue is the choice of the hypothesis space, i.e.
the parameter Hm where the structural risk is minimized. In the case of the functional
of equation (2), the key issue becomes the choice of the regularization parameter
�. These two problems, as discussed in Evgeniou et al. (1999), are related, and
the SRM method can in principle be used to choose � (Vapnik, 1998). In practice,
instead of using SRM other methods are used such as cross-validation (Wahba,
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1990), Generalized Cross Validation, Finite Prediction Error and the MDL criteria
(see Vapnik (1998) for a review and comparison).

An important feature of the minimizer of H [f] is that, independently on the loss
function V , the minimizer has the same general form (Wahba, 1990)

f(x) =
‘∑
i=1

ciK(x; xi): (3)

Notice that Eq. (3) establishes a representation of the function f as a linear combi-
nation of kernels centered in each data point. Using diIerent kernels we get functions
such as Gaussian radial basis functions (K(x; y) = exp(− ||x−y||2)), or polynomials
of degree d(K(x; y) = (1 + x · y)d) [5; 18].

We now turn to discuss a few learning techniques based on the minimization of
functionals of the form (2) by specifying the loss function V . In particular, we will
consider Regularization Networks and Support Vector Machines (SVM), a learning
technique which has recently been proposed for both classi/cation and regression
problems (see Vapnik (1998) and references therein):
• Regularization Networks:

V (yi; f(xi)) = (yi − f(xi))2;

• SVM Classi/cation:

V (yi; f(xi)) = |1 − yif(xi)|+; (4)

where |x|+ = x if x¿ 0 and zero otherwise.
SVM Regression:

V (yi; f(xi)) = |yi − f(xi)|#; (5)

where the function | · |#, called #-insensitive loss, is de/ned as:

|x|# ≡
{

0 if |x|¡#

|x| − # otherwise:

We now brieKy discuss each of these three techniques.

4.2. Regularization networks

The approximation scheme that arises from the minimization of the quadratic func-
tional

1
‘

‘∑
i=1

(yi − f(xi))2 + �||f||2K (6)

for a /xed � is a special form of regularization. It is possible to show (see for
example Girosi et al., 1995) that the coeJcients ci of the minimizer of (6) in
Eq. (3) satisfy the following linear system of equations:

(G + �I)c= y;
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where I is the identity matrix, and we have de/ned

(y)i =yi; (c)i = ci; (G)ij =K(xi ; xj):

Since the coeJcients ci satisfy a linear system, Eq. (3) can be rewritten as:

f(x) =
‘∑
i=1

yibi(x); (7)

with bi(x) =
∑‘

j=1 (G + �I)−1
ij K(xi; x). Eq. (7) gives the dual representation of RN.

Notice the diIerence between Eqs. (3) and (7): in the /rst one the coeJcients ci
are learned from the data while in the second one the bases functions bi are learned,
the coeJcient of the expansion being equal to the output of the examples. We refer
to Girosi et al. (1995) for more information on the dual representation.

4.3. Support vector machines

We now discuss support vector machines (SVM) (Cortes and Vapnik, 1995; Vap-
nik, 1998). We distinguish between real output (regression) and binary output (clas-
si/cation) problems. The method of SVM regression corresponds to the following
minimization:

Min
f

1
‘

‘∑
i=1

|yi − f(xi)|# + �||f||2K ;

while the method of SVM classi/cation corresponds to:

Min
f

1
‘

‘∑
i=1

|1 − yif(xi)|+ + �||f||2K :

A remarkable property of SVMs is that loss functions (5) and (4) lead to sparse
solutions. This means that, unlike in the case of Regularization Networks, typically
only a small fraction of the coeJcients ci in Eq. (3) are nonzero. The data points
xi associated with the nonzero ci are called support vectors. If all data points which
are not support vectors were to be discarded from the training set the same solution
would be found. In this context, an interesting perspective on SVM is to consider
its information compression properties. The support vectors represent the most in-
formative data points and compress the information contained in the training set:
for the purpose of, say, classi/cation only the support vectors need to be stored,
while all other training examples can be discarded. This, along with some geometric
properties of SVMs such as the interpretation of the RKHS norm of their solution
as the inverse of the margin (Vapnik, 1998), is a key property of SVM and might
explain why this technique works well in many practical applications.

5. Algorithms and applications

In this section we discuss some implementation issues and give a brief overview of
applications of the learning techniques discussed in the previous section in the area
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of image analysis. Since algorithms for regularization networks are well established
(see for instance Trefethen and Bau, 1998), we concentrate on SVMs and, from the
algorithmic viewpoint, we consider the case of classi/cation.

5.1. A decomposition method

We begin by introducing the variables 'i =yici. Eq. (3) can thus be rewritten as
f(x) =

∑‘
i=1 'iyiK(x; xi). The 'i (Vapnik, 1998) are the solution of the following

Quadratic Programming (QP) problem

Problem P1

Maximize W (') =
‘∑
i=1

'i − 1
2

‘∑
i; j=1

'i'jyiyjK(xi ; xj)

subject to 06 'i6C; i= 1; : : : ; ‘

with C = 1=(2�). This problem is non trivial since the size of matrix of the quadratic
form is ‘×‘ and the matrix is dense. When ‘ is not too large (up to a few hundred),
one can solve problem P1 by using standard optimization algorithms (see Vanderbei
(1997), for example). However, in many practical applications ‘ can be of the order
of several thousands or more. In this case one needs to resort to more sophisticated
techniques.

Among the many possible strategies, we illustrate a method for solving problem
P1 which was introduced in Osuna et al. (1997). The method /nds the solution
by solving a sequence of simpler problems derived from problem P1. In each sub-
problem, one maximizes W (') with respect to a subset of components of �, while
keeping the other components constant. More precisely, we partition the set of index
I = {1; : : : ; ‘} in two sets: B, the working set, and its complement N in I . Likewise,
we decompose � in the two vectors �B and �N . We then look at the function W (�)
as a function of �B only

W (�B; �N ) =
‘∑

i∈B
'ihi − 1

2

∑
i; j∈B

'i'jyiyjK(xi; xj) + a;

where

hi = 1 −
‘∑

j∈N
'jyiyjK(xi ; xj)

and a is a constant. We consider the following subproblem

Problem P2

Maximize W (�B; �N )

subject to 06 'i6C; i∈B
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The method works in three steps:
1. Randomly select g index in I to form the set B and set �N = 0.
2. Solve problem P2.
3. De/ne Wj(') = @W=@'j. Look for an index j∈N such that one of the following

is true:
• Wj ¡ 1 and 'j = 0
• Wj = 1 and 'j ∈{0; C}
• Wj ¿ 1 and 'j ¿ 0,

If such an index j exists, swap j with any index in B and go back to step 2.
Otherwise stop. The vector (�B; �N ) is the solution of problem P1.

For a proof of the convergence of the algorithm see Osuna et al. (1997). Software
implementing various versions of this algorithm are available on internet. 2 Among
the other methods, it is worth mentioning the technique on sequential updates of the
solution developed in Platt (1998). We conclude by observing that a very similar
algorithm can be derived for the case of regression, see for instance Vapnik (1998).

5.2. Using SVMs for image analysis

SVMs have been used as the core classi/ers of vision systems for example for
identifying faces (Osuna et al., 1997), pedestrians (Oren et al., 1997), and objects
(Papageorgiou et al., 1998), for appearance-based 3-D object recognition (Pontil and
Verri, 1998), and for recognizing dynamic events in image sequences (Pittore et al.,
2000). In all these cases the proposed vision systems were able to deal with objects
diJcult to model due to signi/cant variety of geometry, color, texture, and viewing
conditions.

In what follows we brieKy review a real-world application in which SVMs have
been used along with machine vision techniques for automatic /sh grading by weight.
The motivation comes from the increasing push of the /sh retail market toward
standard-weight packages with minimal waste implied by /lleting and portioning,
and by the fairly inaccurate grading which can be obtained by the mechanical graders
currently in use. The key idea of the system (Odone et al., 1998) is to learn from
examples the shape-weight relation for each speci/c batch of /sh to grade.

The two major software components are a real-time vision module and a ma-
chine learning module which implements an SVM for regression. The vision module
detects /sh sliding through a transparent channel, and acquires side and top views
simultaneously when the /sh appears in the middle of the side image. The system
then takes shape measurements from both views. In the training set the vision system
is used to acquire measurements from a number of /sh and produce the training set.
The SVM module uses the training set to infer an optimal approximation function,
which describes the relation shape-weight for that particular population of /sh. When
the whole /sh pool is graded, this function is used for estimate the weight of all
/sh (3 /sh per second).

2 For example, a fast implementation, due to Ryan Rifkin, can be downloaded from
http:==/ve-percent-nation.mit.edu=PersonalPages=rif=SvmFu.
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A SVM for regression is trained with linear and quadratic kernel using the 13 shape
measurements made available by the vision module. Both kernels seem appropriate
for the limited weight-length ranges envisaged for batch grading on /sh farms (Odone
et al., 2001). In oI-line and more recent on-line experiments, the system prototype
reached 95% accuracy in weight estimation of out of sample /sh.

6. Conclusions

Regularization and Statistical Learning theory provide a framework within which
data analysis tools can be developed and analyzed. Both theories suggest that learning
and data analysis methods should not focus on the minimization of an empirical
error over existing data. Such a minimization is both ill-posed and not necessarily
leading to models with good predictive capabilities. Instead, both theories suggest
that one needs to minimize a combination of the empirical error over existing data
and a penalty factor that penalizes solutions that are too complex: the smoothness
or capacity of the functions considered needs to be controlled. DiIerent choices of
loss function (measurements of empirical error) and of the penalty factor lead to
diIerent learning (data analysis) methods. Two important methods developed with
appropriate choices of these two terms are Regularization Networks and Support
Vector Machines.
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